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The method of perturbing the shape of the boundary was used to determine the stress state of thick-walled 

conical and biconical isotropic shells [l, 21, under the assumption that the shells are closed and that their 

shape deviates but little from a spherical one. In the present paper the method of successive approximations 

is used to obtain the solution of the problem of thermal loading of an elastic, transversely isotropic conical 

pipe (generally speaking, truncated) of constant thickness. The axis of symmetry of the material in question 

with curvilinear anisotropy is directed along the thickness of the pipe. The formulas for determining the 

stress state of the conical pipe at every iteration step are written in an orthogonal system of coordinates 

appropriate to the body in question. The first three approximations of the temperature problem are solved. 

The numerical results obtained confirm the good practical convergence of the method used, for a wide 

range of values of the geometrical parameters of a conical pipe. 

1. DERIVATION OF THE BASIC EQUATIONS DESCRIBING THE DEFORMATION OF A 

CONICAL PIPE OF CONSTANT THICKNESS 

WE SHALL understand by the term “conical pipe” a solid of revolution bounded by parallel conical 
surfaces, with an aperture angle of 29 (Fig. 1). We will assume that in the pipe in questions (which 
is, generally, truncated), the axes of symmetry of the transversely isotropic material studied are 
directed along the thickness of the body. 

Let us introduce the orthogonal conical system of coordinates q, 8, x (Fig. 1) natural for the pipe 
in question. The q and x axes are directed, respectively, along the thickness and generatrix of the 
pipe, and 0 is the polar angle. We will place the origin of coordinates at the point 0. The inner and 
outer side surfaces are described, respectively, by the equations q = 0 and -q = qO, and the 
cross-sections x = x0 and x = x1 are the ends of the pipe. 

In what follows, we shall attach to the directions q, 8, x the indices 1,2, 3. 
Let us write the relation connecting the conical and cylindrical coordinates (Y, 8, z) 

r=n cos cp+x sin cp. 8==-8, s=-n sin cp+x cos cp 

We therefore have the following relations in the x1 = q, x2 = 8, x3 = x system of coordinates: 

ds’=dr”+T5de2+dz’=d~~+~de2+dX2. 

g,,= gm=k gz2 =t=(?l CO.3 Cp+S sin 0)‘. gij-0 (i+i) 

where ds is the length of the elementary vector and gii is the metric tensor. 
Non-zero Christoffel symbols are calculated in the orthogonal system of coordinates from the 

formulas 

T‘**, 

cosq 
=-( 

r 
r22* = .+.Z, r221 = - rc0scp, rrvS = - f sin cp 
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I 
FIG. 1. 

and the Christoffel symbols are symmetrical with respect to the subscripts. 
The Cauchy relations for the case of axisymmetric deformation [3] take the form 

where ~11, ~22, &33 and l/2&13 are the covariant components of the strain tensor and ul, u3 are the 
displacements. 

The equations of equilibrium [3], in case of the axisymmetric stress state, take the form 

&Jr arl +_ .g $_ .” :sv‘ - a+ C.08 (f _(- 
u13 sin cp 

-:O 
r 

,&,I:’ dlJ33 u’3 cos cy u33sh(p 

Ty -+ d.T + r T r 
-a% sin cp = 0 

where 8 are the contravariant components of the stress tensor. 
The equations of equilibrium and compatibility of the deformations will be written in terms of the 

mixed components of the stress and strain tensors as follows: 

du.,‘. 
y&-- -I- 

do.,‘. 
ax + 

u.,‘. - (J.22’ 
R+R 

(J.al’ Q cp =o 

du.3'. I. du.33. u.3 
3. -u-32. 

@l 
+++a=+ R tgcp=O 

R de.,“. 

--%- + e2’ - E.,'. = tgcp 
C 

E.3'. - -& (RE.~~.)+ tgrp &.a3 ] 

f3e.3sw 13 

+l 

z -&_E."L2 li (RE.,~.) -I- tg q&e.,S. 

R=rlcos cp=q+tg cp z 

(1.,‘.= 1’ 0 9 0.2 1.,u13, (Js3’- 33 -a , o.22’=-Tza22 

e., L._ -erl, e.s ‘.=e,3. e., 3._ -ers, e.z ‘.=e2Jti 
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We note that the mixed components of the stress and strain tensors written out above in the 
-n, 8, x system of coordinates, are also the physical components of the stresses and strains, 
respectively [3]. Henceforth, for convenience, we shall denote the physical components of the 
stresses and strains by crii and Ed, respectively. 

Let us now refer the coordinates q and x to the conical radius Ra of the lower end of the pipe 
(Fig. 1). Henceforth, we shall regard q and x as the dimensionless coordinates introduced here. 
Thus q. will be the relative thickness of the lower cross-section of the pipe and x0 = ctg(p. 

2. A CONICAL TRANSVERSELY ISOTROPIC PIPE UNDER THE ACTION OF AN AXIAL 

FORCE AND TEMPERATURE 

Let the pipe in question be acted upon by an axial force Q and a temperature field AT = AT(q). 
The relations connecting the stresses and strains for a transversely isotropic material with 

curvilinear anisotropy, have the following form [4]: 

&et,= koil-kv’ ((J~~+u~~) fE,alAT 

&erz=cw-v~SS -kv’a,,+Ep,AT 

(2.1) 
Etess=oss-- vazz-kv’a,,+E,a,AT 

Ese13’=yols, k=E,IE,, r=E,IG 

Here it is assumed that the isotropy axis of the material is directed along the axis 1 (along the pipe 
thickness), E2, El are the moduli of elasticity along the axes 2 and 1, G is the shear modulus, v and 
v’ are Poisson’s ratios, and al, a2 are the coefficients of linear expansion along the axes 1 and 2, 
respectively. 

The boundary conditions on the side surfaces are given by 

u,, (0,3) =u,, (so, 2) -0, u,s(Ot 2) -0, o,r(I)o, 2) =o (2.2) 

and the boundary conditions at the ends x = x0, x = x1 of a long conical pipe are formulated in 
accordance with the Saint-Venant principle 

3 a,R dq - Q 
zn(R,cosqJ)* = tgcp a,,Rdrl 

0 ,O 

We rewrite the equations of equilibrium and compatibility of the strains as follows 

(2.3) 

(2.4) 

(2.5) 

Equations (2.4)-(2.7) and conditions (2.2) and (2.3) together describe the deformation of a 
conical pipe under the action of the axial force Q and temperature. When relations (2.4), (2.5) and 
(2.3) and the first two conditions of (2.2) hold, the boundary conditions a13(-rlo, X) = 0 is satisfied 
automatically. 

Let us first assume that tgcp + 1, i.e. that the cone is slim and its aperture angle is small. The terms 
on the right-hand sides of Eqs (2.3), (2.4), (2.6) and (2.7) are proportional to (tg’p)2 and hence are 
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small compared with the terms on the left-hand sides of the corresponding equations. This can be 
easily confirmed by writing the equations of the theory of elasticity in the coordinates q and 
5 = xtgcp on which the stresses should depend explicitly. We shall seek the solution of the problem 
using the method of successive approximations, assuming that the right-hand sides of Eqs (2.3), 
(2.4), (2.6) and (2.7) have been computed at the previous iteration step. 

Let us investigate a thin-walled conical pipe (qOl(Xtg(Pe 1)). It will be correct to assume, in the 
case of the integral boundary condition (2.3) at the end of the conical pipe that the variation in the 
stresses along the x axis is small compared with the variation over the coordinate q. Therefore the 
right-hand sides of Eqs (2.3), (2.4), (2.6) and (2.7) are small compared with the principal terms on 
the left-hand sides of the corresponding equations even for large values of the parameter tgcp. It is 
best to seek the solution of the problem using the iteration method mentioned above. We use, as the 
first approximation, the solution of problem (2.2)-(2.7) in which Eqs (2.3), (2.4), (2.6) and (2.7) do 
not have the right-hand sides shown above. 

We will write the temperature distribution AT(q) in the form 

\r(il)=T,,+T,(n). T,,=censt 

i.e. we separate the constant component 7’,, . 
Let us write the formulas for determining the stress state at the nth iteration step. When 

integrating the equations of the problem, we have assumed that 

k - (kv’)2 

j.-v2 +j 

4_?$ (q, 5) = v&j) (rl, r) -t- kv’u::’ (q, t) + R (z) + i F(J”+) (~9 5) dp - E2a2T, (9) 

($” (rl, 2) = C (t) P-’ + D(z) I?-“-’ - l-I (z) + a(“-‘) (II, z) 

&’ (11, t) z.z C (.r) R’% - D (5) R-@“w - II (5) + @,I”-” (tl, 2) 

u;;‘(~,x) = -+& 
rl 

S 
tgcp tl &‘(p,x) R (p,x)dp + R 

S 
06:” (p, 4 dp 

R=q+xtg(~, 
n = “p + R(s)(v-kv’) 

0 

(1 - v2) (69 - 1) ’ 
P = E,(a,-a2)T, 

~‘“-‘~=‘/*(z+-z_+I++I-)/o, (o,‘“-“=‘/,(z++z_+l+-/_) 

I, (q, x) = & Rim-’ j: Rro (p, 5) tg cp J%“+’ (p, 4 + 
0 

P 

+ (v - kv’) s Fr-” (1, z) dt + ST (p, z)] dp 

0 

&- + ,?-l’ (p, 5) 
3 

dp 

ST (q,+) = E, -(I +v)Ra 
C 

LT,-(v-kv’)a,T,+(a 
2 drl 

1 -a2)T, 1 
The functions C(x), D(X) and B(x) are found at every step n of the iteration process from (2.3) 

and the first two conditions of (2.2). The right-hand side of Eq. (2.3) and the functions written out 
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TABLE 1 

rlho Ull’ u.22’ u33’ u13’ u, 1” v22’l (713” u13” 
---.- 

0 0 -3.447 -0.686 0 0 -1.891 -0.369 0 
0.25 -4.211 -1.676 -0.344 -3.362 -1.203 -0.798 -0.187 -0.707 
0.50 -5.463 0.036 -0.005 -4.368 -1.387 0.090 -0.014 -0.821 
0.75 -3.990 1.697 0.331 -3.195 -0.913 0.847 0.151 -0.545 
1 0 3.301 0.664 0 0 1.516 0.313 0 

0 0 -3.421 -0.715 0 0 -1.838 -0.448 0 
0.25 -4.193 -1.650 -0.372 -3.372 -1.177 -0.754 -0.257 -0.731 
0.50 -5.458 0.060 -0.029 -4.383 -1.368 0.118 -0.051 -0.858 
0.75 -4.000 1.715 0.312 -3.205 -0.909 0.862 0.148 -0.573 
1 0 3.321 0.647 0 0 1.525 0.326 0 

0 0 -3.420 -0.716 0 0 -1.838 -0.461 0 
0.25 -4.193 -1.650 -0.372 -3.372 -1.174 -0.749 -0.265 -0.745 
0.50 -5.458 0.060 -0.029 -4.383 -1.366 0.122 -0.053 -0.877 
0.75 -4.000 1.715 0.312 -3.206 -0.909 0.865 0.152 -0.586 
1 0 3.321 0.647 0 0 1.528 0.334 0 

above with the superscript (n - 1) are known, since they were determined at the previous, (n - l)th 
step. 

The method of successive approximations was used to solve the problem of the deformation of a 
conical pipe under the action of uniformly distributed temperature. In this case we have 

Q=O. T,(q)=0 and AT(q) =T,,=const. 

Three approximations cr F) , n = 1, 2, 3 of the temperature problem were obtained. 
Table 1 shows the results of a calculation of the stresses acting over the cross-section n = x0 (at the lower end 

of the pipe) for k = 4, v = 0.2, kv’ = 0.3, y = 6. The dimensionless stresses crtl’ = lo4 all/P, uz2’ = lo2 a2zlP, 

u33’ = lo2 u331P and u13 ’ = lo4 u13/P were calculated for rtO = 0.067, tgcp = 0.8, and utt” = lo2 ulllP, u22)1 = 10 
u,,lP, (r33’l = 10 (T~~/P and u13” = 10’ u131P, respectively, for q. = 0.4, tgcp = 0.6. The quantity 
P = E2(a1 - az)To represents the characteristic force parameter of the problem. Table 1 contains all three 
approximations (they are written out in sequence corresponding to the number of the approximation). 

Figure 2 shows the distribution over the x axis of the stresses utr’ = lo4 ull (%no, x)/P (line l), ~22’ = IO2 
u~~(O,X)/P (points 4), u33’ = lo2 u~~(O,.X)/P (points 3), and ut3’ = lo4 uts(%71a,x)lP (line 2) for k = 4, 

FIG. 2. 
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v = 0.2, kv’ = 0.3, y = 6, no = 0.067, tgcp = 0.8. The valuesx’ = (xtg(p)-’ (x0 = ctgcp, xSx0) are plotted along 
the abscissa. 

The numerical results obtained show that the second approximation of the temperature problem of the 
deformation of a thin-walled conical pipe provides very high accuracy even at large aperture angles of the pipe 
cp (for example when tgcp = 0.8). The first (asymptotic) approximation describes the stress state of a thin-walled 
pipe with small aperture angle with sufficient accuracy. 

In the case of thick-walled pipes, the second approximation is found to provide sufficient accuracy. 
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Using the averaging method [l, 21, a procedure is proposed for determining accurate values of the effective 

moduli of elasticity, piezoelectric moduli and permittivities of piezoactive composites of periodic structure 

with unidirectional fibres having the form of a circular cylinder. The accurate values are obtained by the 

analytical solution of the problems in a periodicity cell, 

THE AVERAGING method has previously been used to determine the effective properties of layered 
piezoelectric composites in [3, 41. To investigate the effect of the properties of fibre piezoelectric 
composites approximate formulas have been proposed based on a statistical approach [5] and on the 
method of matching and variational estimates [6]. 

1. Consider the non-homogeneous problem of the theory of electro-elasticity for a piezoactive 
composite with a periodic structure. It is described by the following system of equations [7] and 
boundary conditions: 

V .a+F=O. V -D=O 

U=C -5 --Vu+eT 5 .Vcp ( 1 e ( ) c (1.1) 
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